September 13, 2013

511 Traffic Program
Enhanced Data Fusion System (EDFS)

System Architecture and Design
Task Order 6.23

Version 1.8

o11

Prepared by:
Leidos

> leidos

1000 Broadway, Suite 675, Oakland, CA 94607

Prepared for:
Metropolitan Transportation Commission

@

101 8 Street, Oakland, CA94607

Revision History

Date

Author

Notes

Reviewer

Version

01/15/2013

Bimesh Giri

First Version for MTC
review

1.0

02/21/2013

Bimesh Giri

Updates made based on
discussion with Janet,
added designs for User,
Audit, Log and Utility
Modules

David Balmer

11

03/04/2013

David Balmer

Added Configuration
Module and updated Log
and Audit Modules

Bimesh Giri

1.2

03/11/2013

David Balmer

Updated Configuration
Module to remove
separate configuration
message queue
requirement

Bimesh Giri

13

04/01/2013

David Balmer

Expanded Configuration
section.

Bimesh Giri

14

04/19/2013

David Balmer

Thet Zaw

Bimesh Giri

Added Role and User
Privileges

Added UML sequence
diagram for user module

Added Data flow diagram
showing various queues
used by the system

Bimesh Giri

15

05/09/2013

David Balmer

Replaced class diagrams
for data elements with
detailed layouts including
field descriptions and
lookup tables.

Updated to match current
development.

1.6

05/24/2013

David Balmer

Bimesh Giri

Thet Zaw

Updated document as
configuration module has
to be changed due to
issues identified during
unit testing

Added details on data
archiving, alarm
processor, publisher and
reporting

Bimesh Giri

1.7

09/13/2013

David Balmer
Bimesh Giri

Thet Zaw

Updated various
modules per requirement
changes

Added section for service
failover (active/passive)
scenarios.

Expanded Alarm module
and reports sections

Bimesh Giri

1.8

Contents

R Vol o1 1Y/ 4 [YT [7
P 111 i oo [o1 o] o P T TP TP PR PST PP 8
2.1 T 0T 0 T <N 8

3 INtENAEA AUGIENCE.... ittt ettt e st e e at e e s bt e e sabeesabeesbeeesabeeebeeesaseesbeeesareenane 8
4 Architecture PrinCiples & Standardsccveeiiiee it e e e e ae e e e e raae e e eanes 8
I (=Y 0014 [o1=] o] £ J T T P T TSP T TP PR 9
5.1 EDFS DAta FIOW ...ttt ettt st st st ettt b e b e s bt e st e et e et e e sbeesneesaee e 9
5.2 EVENT WOIKFIOW ..ottt sttt et st e s e e et e e sabeesbeeesabeeeane 11

6 System Architecture and Data flOWcoocuiiii i s 16
6.1 Configuration MOdUIE (CIM) ...c..ueeeiieeciee ettt ettt e et e et e e s e e e be e e sabeeebae e areesnraeesaseean 16
6.2 F XU e F Y, FoTe (U] LI A Y ISR 16
6.3 Alrm MOAUIE (ALM) ...ttt et e e et e e e et e e e e s bta e e seasbeeesensseeeeenstaeeeennseeeeennsenas 16
6.4 LOZEING MOAUIE (LIM) ..ttt et e e e e e bee e e e et e e e eeabae e e e nbaeeeeenbeeeeennnanas 16
6.5 PUBIIShiNG MOAUIE (PIM)....eiieciie ettt ettt ettt e te e st e e s te e eta e e aae e sbeeessseesaseeesaeesnseeenns 16
6.6 EVENT IMOUIE (EM) oottt ettt ettt e et re e e bt e e s ate e etae e aaeeeabaeessseesnsaeeseeesnseaanns 16
6.7 WOPKFIOW MOUIE (WIM) ...ttt ettt e et e et e e e e eaba e e e eaba e e e easaeeeeennaeeanan 16
6.8 U =T oY/ Lo Yo [V 1T (VY 1Y/) SRR 17
6.9 01T VY o Te TN E=I (01 RSP UR 17
6.10 Database MOAUIE (DIM).....cooueiiiiiiiiie ettt e e eetre e e ee b e e e ebraeeeeabeeeeeabeeeeensbreesennteeas 17
Lo R VT o M @o ' e To T o 1=) PRSP 17
6.12 Data INTEITACE (D) ureiieieireiieeiiiee et cecitee et ee e e eetre e e eetbe e e eeabeeeeebreeesesbeeeeesbeeesensreeesennreeas 17
6.13 DAt PrOCESSON ..ttt et e s e s e e s es 17
6.14 Event Orchestration ENGINE (EOE) ...cc.uviiiieiiiiieeeee ettt e tree e et e e e e e e nrae e e enreeas 17
ST R T o - o o Tl =11 o (PSR PUT U UT U 18
6.16 AUAIT PrOCESSON ... ittt ettt ettt sttt b e sbe e sae e st e en e e reesneesnne e 18
6.17 AlGIM PrOCESSON ...eeiiiitieiteite sttt sttt ettt st sttt e bt e bt e sbeesaee st e s bt e bt e b e e sbeesmeesateenteebeesneesneenas 18
6.18 ATCRIVE PrOCESSON ... iiitietieitesite ettt ettt sttt ettt sbe e st st s bt e bt e b e s beesaeesateeateenbeesneesneenas 18
6.19 PUDBIISHING PrOCESSONuiiiiiiie ettt e e e e e e e e et te e e e e e e e e e anbraaeeeeaeeesannssaaeeeaaeannas 18
6.20 Data ElEmMENTS ...eeiiiieeiie ettt e e s b e e ne e e s ar e e ereeesareeeane 21
6.20.1 EVENt INFOIMAtioN ..cocuiiieiiiiee ettt sttt e 21
6.20.1 EVENT PUBIISHING oottt e e et e e s et te e e e s bt e e e e srtaeeeeanes 27

6.20.2 (OIS g 0 (o]0 =14 o] o FN TR 28

6.20.3 USer and ROIE PriVilEGES.....cciiicuiiiiieiiiie ettt e e st e e s sbae e e s sraeeeesanes 30
6.20.4 WOTKFIOW. ..ciuiiiiiieet ettt st sttt et e be e sbee st e et e b e e sbeesaeenas 32
B.20.5 AlGIMS oottt ettt sttt b e b be e sbe e et e et e e beenneesaeena 36
6.20.6 AUAITING .eeneeiiieiieee ettt she e et b e e be e nreesreeeas 38
Lo O B A o -~ 4 oV - PP PPPPR PPN 39
6.20.8 CONTIBUIAtION ..uviiiiiiiiie et e e et e e s st e e e s sbae e e s e bteeessnteeeesaneaeeesanes 40
Lo R T - | o 1 S I Y= PRSP 43
6.21.1 EDFS DAtabaseooouieiiiiiieiieieeeeee ettt st r e sae e s 43
6.21 EDFS MOTUIES ...ttt ettt st st st b e b e sbe e saeesateete e beesaeesneenas 45
6.21.1 USEI IMOTUIB....eeiieteetee ettt ettt st sttt et b e be e sheesateebe e beesbeesaeeeas 45
L3 A o U 4111 AV 1Y, Fo o [RPN 51
3 2 T oY -1 o Yo [TP PPPUPRRN 52
6.21.4 AUAIT MOAUIE ...ttt st sttt be e sae e st et eesbeesaeesaeeeas 53
6.21.5 AlArmM IMOGUIE ...ttt st et she e et et be e sae e saee e 54
6.21.6 Configuration MOAUIE..........coociiiie et et e e et e e s e bre e e e ebee e e e eraaeaeeanes 56
L3 2 A ¥ o] 1 o 1T = 1Y/ o o (1] L= PPN 60
(oI A (=T o Yo o [o T S PP P P PTUPPPPPPTN 64
6.22.1 EVENE REPOIT e e e e e e e e s e e e e e s e e e e e s e e e e e e e s e s eaaessaasasaasasananaannnnns 64
(S A ST oY XU o [A Y=Y o o] o PR 64
6.22.3 Event Activities Reports (per time Period)........ccecccuiiieiecieee e 64
6.22.4 User Performance Measures Reports (per time period)coceeeecieeeiecieeeeccieeeeecieeeeens 65
6.22.5 Current Performance and Activities Reports (at current date/time)c.cccceevveevreeneennnenns 66
LI T DT - 1 2 o o 11V T o V- PRSP 66
6.23.1 Example of archive COmMPONENT ProCESSccivciiiiiiiciieieecieeeeecieee e re e e e e e s esreaeeeenes 67

/2 1 =Tel o o] (o -4V AT =Y =T ot 4 o] o WU USSPt 67
7.1.1 Software and hardware reqUIrEMENTSceeeeciiieeeiiiie et e e e ar e e eeaaeeaeas 67
7.1.2 SNV o 1 =Y o - N 68

8 WINUOWS SEIVICES ...ttt ettt ettt sttt sttt et e s bt sae e st sttt e bt e b e s beesaeessteeneenbeesbeesneenas 71
8.1 SErVICE INSTAIATION ..oueieieieee et st 72
8.1.1 Create the SErviCe INSTANCEScocviiiiiiirieeeeee ettt e 72
8.1.2 Delete the Service iINSLANCEScccuviiiieiiiiee e 72

8.2
8.2.1
8.2.2

8.3

Service Monitoring....................
tblServiceActivationHistory
tblServiceHeartbeats..........

Service Testingcccceeevvenennnn,

1 Acronyms Used

API Application Programming Interface
AWS Amazon Web Services

CMS Content Management System
coT Congestion Override Tool

Ccsv Comma Separated Values

DAL Data Access Layer

DCOL Data Collection Subsystem

EC2 Elastic Compute Cloud

EDFS Enhanced Data Fusion system
GPS Global Positioning System

HTTP Hypertext Transfer Protocol

IVR Interactive Voice Response

IMS Java Message Service

MLDB Master Link Database

MsSMQ Microsoft messaging queue
NoSQL Not Only SQL

(0]6]p) Object-Oriented Design

ooP Object-Oriented Programming
RDS Relational Database Service

S3 Simple Storage Service

SES Simple Email Service

SMTP Simple Mail Transfer Protocol
SNMP Simple Network Management Protocol
sQL Structured Query Language

sSQs Simple Queue Service

TOMS Travinfo Open Messaging Service
TTL Time To Live

URL Uniform Resource Locator

XML Extensible Markup Language

ZIP Compressed data format

http://encyclopedia.thefreedictionary.com/api
http://encyclopedia.thefreedictionary.com/Amazon+Web+Services
https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Data_access_layer
https://aws.amazon.com/ec2/
http://encyclopedia.thefreedictionary.com/gps
http://www.thefreedictionary.com/Hypertext+Transfer+Protocol
https://en.wikipedia.org/wiki/Interactive_voice_response
http://encyclopedia2.thefreedictionary.com/Java+Message+Service
http://en.wikipedia.org/wiki/NoSQL
http://en.wikipedia.org/wiki/Object-oriented_design
http://en.wikipedia.org/wiki/Object-oriented_programming
https://aws.amazon.com/rds/
https://aws.amazon.com/s3/
https://aws.amazon.com/ses/
https://en.wikipedia.org/wiki/Simple_Mail_Transfer_Protocol
http://encyclopedia.thefreedictionary.com/snmp
https://en.wikipedia.org/wiki/SQL
http://encyclopedia.thefreedictionary.com/Amazon+Simple+Queue+Service
https://en.wikipedia.org/wiki/Time_to_live
https://en.wikipedia.org/wiki/Uniform_resource_locator
http://encyclopedia2.thefreedictionary.com/Extensible+Markup+Language
https://en.wikipedia.org/wiki/Zip_(file_format)

2 Introduction

2.1 Purpose

This document provides an overview of the system architecture and design of the new EDFS, a web
based application that will allow TIC operators to manage incidents/events data within 511. For detailed
list of system functionalities, please refer to the requirement specification document. This document
describes the data flow and modules that will help construct the new EDFS.

3 Intended Audience

This document describes the new EDFS architecture and design including process flows, modules and
components, classes and interfaces between them, data storage and messaging. The intended audience
of this document is software developers and engineers, and system administrators who will be involved
in the system development and maintenance. This document assumes that reader has knowledge of
Object-Oriented Design (O0OD), Object-Oriented Programming (OOP), distributed systems, system and
software architectural and design patterns, principles of relational and NoSQL databases, SQL
(Structured Query Language), XML (Extensible Markup Language), C# and the Java programming
languages, XML, web development, Microsoft .NET framework, MSMQ (Microsoft messaging Queues),
and Amazon Web Services (AWS). The terms event and incident have been used interchangeably in this
document. Similarly terms such as state, stage and situation refer to same entity called “state” and
represent the state of an event.

4 Architecture Principles & Standards
The following architectural principles and standards should guide the design and development of the
new EDFS:

Architecture Principles

e Application should have an open architecture to allow easy future extension.

o Application modules should be loosely coupled to allow possible future replacement with other
modules.

e Application should support industry standard technologies and best practices.

e Application should be able to reside on a standard Windows Server platform and should not
require any non-standard hardware.

e The application should leverage the latest software releases and other technical infrastructure
to capitalize on the benefits from emerging industry practices.

e Application architecture should enable business continuity and should be available 24 hours a
day, 7 days a week.

e It should be ensured that any failure attributed to the environment or network has minimal
impact on application access and the execution of related jobs.

e Recoverability, redundancy and maintainability should be addressed at the time of design.

e Application should be easy to use and maintain.

5 Key Concepts
This section explains key concepts of new EDFS which are useful in understanding the overall system
architecture.

5.1 EDFS Data Flow

Event data within EDFS can originate from multiple data sources such as CHP CAD, LCS and EDFS users.
To receive data, EDFS exposes an interface to each of these data sources e.g. the CHPDI interface
receives data from CHP CAD. Once data is received and processed by the data interface, it will then pass
through a set of data processors or enrichers that will add additional information to help construct an
Event message that can be injected into EDFS for further processing. Each Data interface can have
multiple data processors that it will use to enrich the raw data. These data processors will be available
across multiple data interfaces and each data interface can have a configurable data processor workflow
that it can enrich its data through.

After data has been enriched, the data interface will then submit the event to the event orchestration
engine (EOE) The EOE is the heart of EDFS, and where event will go through it’s lifecycle following a
configured workflow. The EOE monitors every event in the EDFS that is not in Archived state. Following
the workflow, EOE will:

e Transition event states based on defined actions within a workflow.

e Create audit trails for deriving performance metrics.

e Trigger data publishing to external systems such as JMS, API.

e Generate alarms based on certain conditions which then get displayed or sent out to users.

EDFS will also include an Audit and Log component to collect audit and log information.

The EDFS web interface will provide all user interfaces required to manage event, users, workflow and
reports. The below diagram depicts this system data flow at a very high conceptual level.

Event———| Data Processor

External Data Sources (CHP CAD, LCS,

CWWP) _l

Data Processor

Q\terfaces
>

P+ (CHP, CAD, LCS,
cwwe

Data Processor

Data Processors/Enrichers

l User Info:

y
User Manager
New Discarded

Event Orchestration Configuration Manager
| | g
Alaram Audit
, l Actions/Triggers User Info Log Manager
A
Publisher Utils
Alarm Manager Audit Manager Event Module +
|
| | f
Alarm Alarm Audit Event
| ¥ v I v

Web Interface (U, Reporting, Admin)

Diagram 1: ESFS Conceptual Architecture

10

5.2 Event workflow

The primary function performed by EDFS is to manage event workflow, configured by system operators.
Events in EDFS will go through a series of states/stages from the time they are created to the time they
are archived. States typically represent the “situation” of an event during its lifecycle. The lifecycle of an
event will be configurable, based on its source. Each state has set of activities and an event transitions
from state to state as a result of execution of one such activity. State transition activity is typically
executed by a user; however state transitions can occur autonomously if configured likewise. Some
activities just update the current situation of a state without resulting in state transition.

Each state has four activities that are executed as a result of actions by users/system or by the state
itself. Statelnitialization and StateFinalization activities are executed by virtue of being in a particular
state; whereas ChangeState and UpdateState activities are triggered by users or the system.

e Statelnitialization activity - If this optional activity is defined, it is the first activity the
workflow executes when it enters a state. This activity will typically include creating audit
logs such as recording the date and time when an event entered this state.

e ChangeState activity - This activity will result in state transition. Each state will have a
configurable set of other states that it can transition to and users who can initiate such
transitions via actions e.g. an incident reported via twitter feed can transition from New
state to Published state via the Publish action performed by TIC Supervisors only.

e UpdateState activity - This activity will update the current situation of the state without
resulting in state transitions. Audit logs and notifications can be generated based on
certain conditions when an update occurs.

e StateFinalization activity, if this optional activity is defined, it is the last activity the
workflow executes as it leaves a state. This activity will typically include creating audit
logs such as recording the date and time when an event exited this state. These audit logs
can be later used to derive performance metrics e.g. the difference between time logged
at StateFinalization and Statelnitialization will tell us how long an event stayed in a
particular state.

Below are the different states of an event:

e New — This represents a situation where an event is automatically created from data
received from external system such as CHP CAD, or if an event is entered using the EDFS
Web interface. Workflow can be configured such that events can automatically transition
to the next state e.g. an event can automatically transition from New to Published state
based on the start time of the event. Similarly configuration can be defined such that
specific users will be required to perform the “Publish” action for a transition to occur
and alerts are sent out to users responsible to take actions. A workflow state cannot have
both automatic transitions as well as action driven transitions defined at the same time.

11

e Published — This represents a situation where an event has been published by operator or
was created from a trusted system which doesn’t require any action from an operator.

e Closed — This represents a situation where an event is has been closed.
e Archived — This represents a situation where an event has been archived.
o Discarded — This represents a situation where an event has been discarded.

EDFS provides set of actions that can be performed on an event in order to change its state or
situation. These actions are executed under the ChangeState or UpdateState activity of a state.
Listed below are the actions available at each state. Every event type, based on its source will
require workflows to be configured using these states and actions. Each action will have list of
associated actors (users) who can perform them.

Actions available during “New” state are:

e Publish — This action involves changing the state of the event to “Published” and can be
performed either by a user or system. A Publish action configured to be performed by a
system will result in automatic transitions.

e Update - This action involves updating attributes of an event and can be performed either
by a user or system. This action will not result in state change.

e Discard — This action involves discarding an event by a user and will result in change of
state to “Discarded”.

Actions that can be performed on an event during “Published” state are:

e Update - This action involves updating attributes of an event. Depending on the type of
user performing this action, will either result in republishing the event with updates or
creating a change request requiring a review. The User assigned to approve or apply
these change requests will be configurable and alerts will be sent out to all those users
whenever a change request is submitted. This action will not result in state change.

e Close — This action involves closing an event and will result in change of state to “Closed”.
Events that were published to external systems will be republished as closed.

e Expire — This is an internal action that is executed when a scheduled event expires and
will result in change of state to “Closed”.

Actions that can be performed on an event during “Discard” state are:

e Update - This action involves updating attributes of an event. This action will not result in

state change.

12

e ReOpen — This action involves reopening an event by a user. ReOpen will result in
transitioning to “Published” state.

e Archive — This action involves archiving an event and will result in change of state to
“Archived”.

Actions that can be performed on an event during “Closed” state are:

e Update - This action involves updating attributes of an event. This action will not result in

state change.

e Archive — This action involves archiving an event and will result in change of state to
“Archived”.

e ReOpen — This action involves reopening an event by a user. ReOpen will result in
transitioning to “Published” state.

13

Below is a sample data flow for a new Event coming into EDFS from an external data source such as
CHPCAD.

]

Event

Is event in State
Published?

EDFS - Sample workflow For
New Event (Non Trusted Source)

Diagram 2: Sample EDFS Workflow (New Event)

14

Below is a sample data flow for Event updates coming into EDFS from an external data source or the
update being performed by an operator using the EDFS web interface.

> Dwea Procaser |
— [

an user Close this
event? And are there
nopending change Y Closed |—Arc Archived
request?
Reopen-

Can user
Reopen?

Can

W

Y- | Discarded

>
L

EDFS — Sample workflow for
Event Updates (Non Trusted
Source)

Diagram 3: Sample EDFS Workflow (Update Event)

15

6 System Architecture and Data flow

EDFS consists of multiple modules to minimize dependencies between subsystems, and also to
introduce layers of abstraction. These modules are classified based on the type of functionality they
perform and can be easily modified as needed without affecting other parts and subsystems. Since each
module is independent of the other, updates or changes can be carried out without affecting the system
as a whole. This allows for better maintainability and extensibility. The separation of these modules also
allows for scalability e.g. having the web module not tightly integrated with the event orchestration
module will allow the website to be easily scalable if needed.

At high level, EDFS comprises of ten core modules that are listed below:

6.1 Configuration Module (CM)

Configuration module provides necessary configuration parameters that are required by other modules
in EDFS. The configuration module will provide methods to read and update the configuration store.
CM is also responsible for notifying modules when configuration has been updated by system admins. A
module will then invalidate its current set of configuration and reload the new set.

6.2 Audit Module (AM)

Audit module provides methods that can be used to submit audit trails to a database. This will also
provide for methods that will be used by the reporting interface to build and display various audit
reports.

6.3 Alarm Module (ALM)
Alarm module provides methods that can be used create and update alarms in a database. This will also
provide for methods that will be used to create Audit records to track changes for alarm updates.

6.4 Logging Module (LM)
Logging module provides methods that can be used to submit log data to a database. Log levels will be
configurable such as debug and error and may result in generating and sending notifications.

6.5 Publishing Module (PM)

This module provides methods for publishing data to external systems and will act as interface between
EDFS and those external systems. Publishing module will consist of sub channels such as JMS channel,
API etc.

6.6 Event Module (EM)
This module provides methods for managing event data within EDFS, such as creating and updating
events, validation and interacting with the Audit and Alarm modules to track changes to an Event.

6.7 Workflow Module (WM)

This module provides functionality to manage event workflow from state to state. Workflow will be
configured by EDFS administrators with each data source having multiple workflows. EDFS will use
default system workflow if a workflow cannot be located for a specific type of event.

16

6.8 User Module (USM)
This module provides methods for authentication/authorization and user management methods such as
creating new users, roles, assigning and revoking privileges.

6.9 Utility Module (UM)
This module provides various ancillary methods such as date/time conversion, data sanitizing and
formatting, well-formedness checks etc. that can be used across different modules.

6.10 Database Module (DM)

This module acts as a bridge between the database and other modules. It provides basic data access
methods and is designed such that the entire module can be easily modified or replaced if the
underlying database is switched to another provider. For example, Audit module will make use of
methods from database module to save audit logs, with the database module executing the actual SQL
statements that will write those logs to a database.

EDFS consists of subcomponents such as web and the event orchestration engine that provide a runtime
environment for various EDFS methods. The above listed core modules are internally consumed by
these subcomponents to execute various operations. Listed below are the different subcomponents
within EDFS.

6.11 Web Component
This provides all of the user interfaces for EDFS, data and system management. This component consists
of various HTML/JavaScript pages that allow for all the user interactions with EDFS.

6.12 Data Interface (DI)
Events in EDFS can originate from multiple external sources. EDFS exposes a DI to each of these external
data source. A Dl is responsible for receiving, parsing, processing, and sanitizing incoming data.

DI internally makes use of Data Processors, explained below, to process and transform data received.
For example, a data interface for CHP CAD may use Geocoder Data Processor to determine geographic
location of an event. The sequence of DPs that a DI will pass messages through will be configurable
using the EDFS system admin interface.

6.13 Data Processor

Data processors are modules that perform various methods such as geocoding and data sanitization.
These modules will be primarily used by Data Interfaces. Additional data processors can be added to
EDFS if a new requirement arises in future.

6.14 Event Orchestration Engine (EOE)

After data has been processed by a Data Interface using various Data Processors it will then be
submitted to the orchestration engine which is where an event starts its lifecycle. EOE is responsible for
managing an event’s lifecycle following a workflow or set of rules configured by administrators. Each
event, based on its source type will have a defined workflow in the system.

17

6.15 Log Processor

This component handles the log persistence requirement for EDFS. Other components will make use of
interfaces exposed by Log Processor to submit error and debug logs during various operational scenarios
within EDFS.

6.16 Audit Processor
This component handles audit recordings within EDFS. Other components will make use of interfaces
exposed by Audit Processor to submit audit logs during various operational scenarios within EDFS.

6.17 Alarm Processor
This component is responsible for monitoring state of events and generates alarms based on certain
criteria specified in the requirements. The alarms are then displayed to users via the website.

6.18 Archive Processor
This component is responsible for archiving the closed events which are older than number of days
(which can be configurable).

6.19 Publishing Processor

This component provides runtime environment and is responsible for publishing data to various external
channels such as JMS, API, and Twitter etc. Publisher will be utilized by Event Orchestration Engine to
publish an event when it’s in “Published” state.

Note: Since once of the channels is JMS, a Java based client will be used to push to JMS topics and
respond to JMS Queues. Software written using non-Java based JMS clients have limitations in error
handling and do not implement all the specifications per JMS specifications.

18

The following diagram shows different modules and components defined above that together constitute
new EDFS.

Diagram 4: EDFS Architecture

19

The following diagram shows the data flow between components of the system.

L{x) LX)

20

6.20 Data Elements

Diagram 5: EDFS Data Flow

EDFS is a data management tool which allows collection and manipulation of various data from different

sources. Amongst these, Event is the core data with remaining data types providing additional features

to help manage it. This section list and defines each of these data elements. Many of these elements

will be represented by an individual data object in EDFS.

6.20.1 Event Information

Represents various traffic and transit related events, and incidents within the 511 system. Changes to an

event will create an Event history entry and an Audit record.

Event Type

EventTypelD

Type of event (e.g. “Traffic”, “Transit”, “Emergency”, etc.), see
Event Type for possible values.

Event Sub Type

EventSubTypelD

Sub Type for the selected Event Type. For “Traffic” would be
“Incident” (which would include Accidents, Fire, Weather, Short-
term Construction, Roadwork etc.), “Construction”, and “Special

Event”. Other event types may have their own sub types defined.

See Event Sub Type for possible values.

Traffic Sub Types

CategoryID

For EventType “Traffic”:
for SubType “Construction”: see ConstructionTypes.csv
for SubType “Incident”: see IncidentTypes.csv

for SubType “Special Event”: see SpecialEventTypes.csv

For Special Events

SpecialEventDetails

Event Location

CountyID

Latitude From MDB tblFacility->tblPointLocation by CrossStreetStart
Facility_ID

Longitude From MDB tblFacility->tblPointLocation by CrossStreetStart
Facility_ID

PostMiles Postmile markers indicate the distance a route travels through a

County. ie: “880 ALA 99” is mile 99 in Alameda County on Route
880.

SourcelLocationDescription

e.g. "JWQO"

21

RouteFacilitylD

RouteFacilityName

Route/Facility, Bridge and Venues
See MDB tblFacility

Save Facility_ID in tblEvents, Facility_Name in history and archive

Direction

Descriptor

(e.g. "before", "after", "at", "between" etc.)

CrossStreetStartPointID

CrossStreetStartPointName

Point_ID From MDB tblFacility->tbIPointLocation by Facility_ID

Save Point_ID in tblEvents, Point_Name in history and archive

CrossStreetEndPointID

CrossStreetEndPointName

Point_ID From MDB tblFacility->tbIPointLocation by Facility_ID

Save Point_ID in tblEvents, Point_Name in history and archive

Impact

PlayTypelD

(list of entries will be provided from existing EDFS)

TravelerAdvicelD

(list of entries will be provided from existing EDFS)

PavementConditionID

Will only apply to incident type events. (list of entries will be
provided from existing EDFS)

WeatherConditionID

Will only apply to incident type events. (list of entries will be
provided from existing EDFS)

TravelerlmpactID

(list of entries will be provided from existing EDFS)

ComputedScore

(algorithm will be provided by Bimesh)

Event Background Information

ID

Unique identifier of an event within the EDFS system

DataSourcelD

The Data Source of the event (e.g. "CHP CAD" etc.), see Data Source
Type for possible values

ExternallD Unique identifier provided by external data feed, used to
associated incoming events with an existing event (a.k.a. “Event ID
in Source’s System”)

UserID Owner of the event

OriginalEventDescription

Original event description from source

ExpectedDelayTime

ExpectedMilesOfBackup

RelatedEventID

Unique identifier of the “parent” event that the event is related to

RelationshipTypelD

Type of relationship between an event and its RelatedEvent (e.g.
"Child", Duplicate" etc.), see Event Relationship Type for possible

values

PointOfContact

22

PointOfContactPhone

PointOfContactEmail optional

Notes

Description Will be constructed from Ul selections.
DateCreated Date and time when event was created
LastUpdated Date and time when event was updated
StartDate Min(Schedule.StartDate)

EndDate Max(Schedule.End)

Event Schedule

For Long-Term construction and events that span over multiple days EDFS shall allow creating multiple schedules per event.

Operators shall also be able to define Lane Impacts for each schedule entry.

Number, Type, status and lane details of lanes affected(The list of entries will be provided from existing EDFS)

Operators shall also be able to graphically define lane impacts. The underlying link definition should be used to construct

lane diagram. In case where an incident impacts expands multiple exists and multiple links, the lane configuration for first
link should be used. The operators can choose to define impact using list as well as graphical lane representation.

StartDate

Scheduled Start Date and Time

EndDate

Scheduled End Date and Time

EstimatedDuration

Estimated event duration

LeadTime How long before the StartDate should we publish the Event?
LagTime How long after the EndDate should we close the Event?
Continuous (not sure what this means yet)

ActiveDays (All, Mon, Tue, Wed, Thru, Fri, Sat, Sun, Weekday, Weekend)

ImpactLevellD

(Major, Minor, Moderate, Severe)

PeakHourDelay

(list will be provided from EDFS)

AlternateRouteFacilitylD

AlternateRouteFacilityName

Route/Facility, Bridge and Venues
See MDB tblFacility

Save Facility_ID in tblEvents, Facility_Name in history and archive

PeakAlternateRouteDelay

AffectedLaneCount

Number of lanes affected by the event

LaneTypelD

LaneStatusID

LaneDetaillD

System Information

23

StateTypelD

Current state of the event (e.g. “New”, “Published”), see Event
State Type for possible values

PublishingChannels

A comma delimited list of Dissemination Channel IDs. For
automatically published events, this list will be all of the channels
available for the data source. For user edited events, this will
contain the selected channels for publication. There will be an
Event Channel Publishing Status record for each entry in this list.

ReadyToPublishTimeStamp

Timestamp used to detect Ul changes to an event during
publishing. If the timestamp was changed during publishing, the
publishing manager will NOT update the channel publishing statues
after the event has published. The events need to be republished
again.

RequestedActionTypelD

Action to be taken against the event by Event Orchestration (e.g.
“Publish”, “Close”), see Action Type for possible values

6.20.1.1 Event Types and Sub Types
Defines basic type of an event, currently defined values are:

Event Type
1 | Traffic
Sub Types
1 | Construction
2 | Emergency
3 | General
2 | Incident
3 | Special Event
2 | Transit

6.20.1.2 Categories

Defines classification of a “Traffic” event, currently defined values are:

7

e SubType “Construction” includes “Bridge Painting”, “Paving”, etc.

e SubType “Incident” includes “Earthquake”, “Fire”, etc.

e SubType “Special Event” includes “Baseball Game”, “Fleet Week”, etc.

24

25

6.20.1.3 Impact Level Type

Defines impact of an event on traffic lanes, currently defined values are:

Impact Level Type

1 Major
2 Minor
3 | Moderate
4 | Severe

6.20.1.4 Data Source Type

Defines the data source of an event, currently defined values are:

Data Source Type

Incoming data feed is
automatically published

(Could be changed as

needed)
1 EDFS User Interface No
2 Caltrans LCS Yes
3 Caltrans CWWP Yes
4 CHP CAD Yes
5 Events Venue Provider RSS/Atom feeds No
6 Twitter No
7 Structured Email Message No
8 Transit Agency Yes
9 Caltrans D-4 ATMS Yes
10 | Media No
11 | Email No

6.20.1.5 Event Relationship Type
Defines type of relationship between an event and its RelatedEvent, currently defined values are:

Event Relationship Type

1 | Child
2 | Duplicate
3 | Other

26

6.20.1 Event Publishing
Events are selected for publishing based on the Dissemination Channels defined for the event, and the
channel publishing status of each channel. Every schedule events have two records (publish or close) per
schedule per channel. For instance, event ID 123 has three schedules and need to publish for 2 channels.
Total entries in this table will be 2 records (publish and close) * 3 schedules * 2 channels = 12 records.

6.20.1.1 Dissemination Channel Type
Dissemination channels are used by the publisher service to send event information to external systems.

Dissemination Channel Type Requires

1 511 Traffic Website — Breaking News (using Traffic Admin)

2 511 Traffic Website — Construction (using Traffic Admin)

3 511 Traffic Website — Traffic Map Supervisor privilege
(Congestion and B-A-L using Congestion Ol)

Floodgates on 511 Phone (using Floodgate manager)

Floodgate on MY 511 Phone (using Floodgate manager)

511 Traffic Data Feed - TOMS

Twitter Account - #twitter1 (example)

Ticker

O 0| N[O 0| b

511 Transit Website (using Transit CMS)

10 | 511 Mobile Website

6.20.1.2 Event Channel Publishing Status
Defines the publishing status for each dissemination channel of an event.

Event Publishing Status

EventID Links to an event

SchedulelD Links to a specific event’s schedule

EventPublishStatusType See Event Publish Status Type for possible values

DisseminationChannel See Dissemination Channel Type for possible values

ChannelPublishStatusType See Channel Publish Status Type for possible values

ScheduleDate Date and Time when an event needs to publish or close. The
schedule date value will be the same as schedule’s start date or end
date based on EventPublishStatusType value.

6.20.1.3 Event Publish Status Type
Defines the event’s publishing statues, currently defined values are:

27

Event Publish Status Type

1 | Publish

2 | Close

6.20.1.4 Channel Publish Status Type
Defines the channels’ publishing statuses, currently defined values are:

Channel Publish Status Type

1 | To be published

2 | Was published

3 Error

6.20.2 User Information

Represents a user within the EDFS system, typically operators and supervisors. A user will have

privileges on various resources within EDFS. A user will also have list of preferences.

User

ID

Unique identifier of a user within the EDFS system

UserName

UserEmail

FirstName

LastName

StatusTypelD

The Status of this user (e.g. "Active" etc.), see User Status
Type for possible values

ProfileStatusTypelD

The Profile Status of this user (e.g. " NeedToChangePassword
" etc.), see User Profile Status Type for possible values. For

instance, “NeedToChangePassword” flag force the user to
change the password when he/she login.

RolelD

The Role that this user is assigned (e.g. “Operator” etc.), see
Role Type for possible values. A user belongs to a single Role
and inherits the privileges assigned to that Role.

FailedPasswordAttemptCount

Record the number of failure login attempts. Check this value
against “MaxInvalidPasswordAttempts” configuration value
and lock the user if the value is equal or greater.

FailedPasswordAttemptWindowsStart

Record the last time login failed. Check this value against
“MaxPasswordAttemptWindow” configuration value at next

28

login and increase “FailedPasswordAttemptCount” value if the
login attempts are within the window.

LastLogin

DateCreated

LastUpdated

6.20.2.1 User Status Type

Defines the status of a user, currently defined values are:

User Status Type
1 | Active

2 | Disabled

3 | Locked

29

6.20.2.2 User Profile Status Type
Defines the profile status of a user, currently defined values are:

User Status Type

1 None

2 | NeedToChangePassword

3 | NeedToRegister

6.20.2.3 User Challenge Questions
Represents the challenge questions and their answers that would be used when retrieving a user’s

password.

User Challenge Questions

UserID

ChallengeQuestion

e.g. “What is your Fathers middle name”

ChallengeAnswer

6.20.2.4 User Session

Represents a user session within EDFS and maintains details such as authentication ticket, date session

was created and last activity time.

User Session

UserID

AuthTicket

ClientIP

CreatedDate

LastActivityTime

6.20.3 User and Role Privileges
Represents privileges assigned to a data source and/or event type, along with the available actions and

dissemination channels.

User and Role Privilege

UserID Required when assigning a privilege to an individual user

RolelD Required when assigning a privilege to a role (instead of an
individual user), see Role Type for possible values

ResourceType See Resource Type for possible values

30

DataSource Required if ResourceType is “Data Source”, see Data Source Type

for possible values

DisseminationChannel Required if ResourceType is “Dissemination Channel”, see

Dissemination Channel Type for possible values

EventType Required if ResourceType is “Event”, see Event Type for possible
values
Privileges Privileges assigned to either a Role or User will contain

combinations of these values (e.g. Read+Publish+Close), see
Privilege Type for possible combinations

6.20.3.1 Resource Type
Resources are objects within EDFS that have Privileges defined on them.

Resource Type

1 | Dissemination Channel
2 | Data Source

3 | Event

4 | User

6.20.3.2 Role Type
Defines the role assigned to a user or process, currently defined values are:

Role Type

1 | EDFS (assigned to automated processes)
2 | Operator

3 | Supervisor

4

System Administrator

6.20.3.3 Privilege Type
Represents the privileges available on resources within EDFS. Privileges assigned to either a Role or User

will contain combinations of these values (e.g. Read+Publish+Close).

Privilege Type

0

None

Access privileges

1

Read

31

2 Create

4 Update

8 Delete

Action Privileges

16 Publish
32 Close

64 Discard
128 | Archive

Example of privileges assigned to the Supervisor Role

Dissemination Channel Privileges
511 Traffic Website — Breaking News Read+Create+Update
511 Traffic Website — Construction Read+Create+Update

Data Source

CHP CAD Publish+Close+Discard

Event Type

Incident Publish+Close+Discard

User Read+Create+Update+Delete

Example of privileges assigned to an individual user

Dissemination Channel Privileges (would override their Role privileges)

511 Traffic Website — Breaking News Read

Data Source

CHP CAD Publish

6.20.4 Workflow
Represents a workflow defined for data originating from a particular source. Each workflow will consist
of multiple states and transitions.

Example of CHP CAD Workflow

State Stage From State Transition Action To State

Begin New Publish Published

32

Close Closed

Discard Discarded
Intermediate Published Update Published

Close Closed
End Closed Discard Discarded

6.20.4.1 Workflow

Controls the workflow for a data source.

Workflow

ID Unique identifier for a data source workflow
DataSource See Data Source Type for possible values
Active

DateCreated

6.20.4.2 Workflow State
Defines the available “From States” for a workflow.

Workflow State

WorkflowID Workflow that this state belongs to

State See Event State Type for possible values

StateStageType The stage at which this state occurs in a workflow (e.g. “Begin”), see

State Stage Type for possible values

33

6.20.4.3 State Stage Type
Defines the stages of a workflow process, currently defined values are:

State Stage Type

1 | Begin

2 | Intermediate

3 | End

6.20.4.4 Transition
Defines the actions that can be taken against an event in a specific state.

Transition

WorkflowID Workflow that this transition belongs to

Action The action that will transition an event from one state to another
state, see Action Type for possible values

FromState The state that an event must be in to take the action, see Event
State Type for possible values

6.20.4.5 Action
Defines the state that the event will transition into when taking a specific action.

Action

ID Value corresponds to an Action Type

Name

TransitionToState The state that an action will transition an event to, see Event State
Type for possible values

6.20.4.6 Action Type
Defines the available actions that can be taken against an event.

Action Type

1 | Publish

Close

Update

2
3
4 | Discard
5

Archive

34

6.20.4.7 Event State Type

Defines the possible states of an event.

Event State Type
1 | New

2 | Published

3 | Closed

4 | Archived

5 | Discarded

35

6.20.5 Alarms
Represents an alarm within the EDFS system. Changes to an alarm will create an Alarm history entry
and an Audit record.

Alarm

EventID Links an alarm to an event

ExternallD Links an alarm to an event by “Event ID in Source’s System”
(optional)

SchedulelD Links an alarm to a specific event’s schedule

UserID The owner of this alarm (optional). If not set, the alarm will be
global.

AlarmType See Alarm Type for possible values

StatusType See Alarm Status Type for possible values

Message

StartDate

IsGlobal Indicates whether alarm is visible to all users

LastUpdated

6.20.5.1 Alarm Type
Defines the types of alarms which can be created.

Alarm Type

1 | Error

2 | Start Scheduled Event Start
3 | End Scheduled Event

4 | Orphan Orphan Event

5 | Open Open Event

6 | General

6.20.5.2 Alarm Status Type
Defines the possible alarm status values.

Alarm Type

0 Inactive

1 Active

2 | Snoozed

3 | Confirmed

4 | Pending

6.20.5.3 Alarm Default Values
Allows for configuration of default settings based on the event type and severity/impact.

Alarm Default Values

EventType The event type that this default value applies to, see Event Type for
possible values

EventSubType The event sub-type that this default value applies to, see Event Type
for possible values

LeadTime Number of minutes before event start date/time when this alarm will
become active (e.g. 240 = 4 hours)

For open event, this alarm will become active after event was
published

LagTime Number of minutes before event end date/time when this alarm will
become active (e.g. 240 = 4 hours)

This value is always NULL for unscheduled events

StartMessage Message/Note for scheduled “start” and open event alarms
EndMessage Message/Note for only scheduled “end” alarms

Enable On/Off

Sound Indicate whether the sound alarm or not

Snoozelnterval Number of minutes this alarm is snoozing

LastUpdated

37

6.20.6 Auditing

Represents an audit record within the EDFS system, and contains current and previous values for a

changed field.

6.20.6.1 Audit Record

An audit record is created for each field changed when an alarm or event is updated.

Audit Record

EventID Links an audit record to an event

ExternallD Links an audit record to an event by “Event ID in Source’s System”
(optional)

RecordType Identifies whether an audit record is for an alarm or event, see Audit
Record Type for possible values

HistorylD Links this audit record to either an Alarm history or Event history
record, depending on RecordType

FieldName Name of the field that was changed

FromValue Previous value

ToValue Current value

TimeStamp Date and time when the field was changed (for reporting)

UserlD ID of the user who made the changes

6.20.6.2 Audit Record Type

Identifies whether an audit record is for an alarm or event.

Audit Record Type

1 | Alarm

2 Event

38

6.20.7 Logging

A log message is created when an error condition occurs and should provide a level of detail required for

debugging the cause of the error.

6.20.7.1 Log Message

Represents a log message within the EDFS system. The LoglLevel determine the level of detail to include,
and any follow-up actions required (e.g. sending a notification email). The LoglLevel assigned to a
specific Component will be configurable using EDFS system admin interface.

Log Message

UserID Links a log message to a user (optional)

EventID Links a log message to an event (optional)

ExternallD Links a log message to an event by “Event ID in Source’s System”
(optional)

ModuleType Identifies the system module that created this log message, see
Module Type for possible values

LoglLevel Identifies the logging level of this message and will contain
combinations of these values (e.g. Message+Notification),see Log
Level Type for possible combinations

Source Identifies the location within the source code where this log message
was generated (for debugging purposes)

Message

StackTrace Detailed information what would help in debugging the cause of an
error. Requires setting the LoglLevel to “Stack Trace” in the system
configuration.

TimeStamp Date and time when this message was logged (for reporting)

6.20.7.2 Log Level Type

The Loglevel assigned to a log message will contain combinations of these values (e.g.

Message+Notification).

Log Level Type
0 | None

1 | Message

2 | Stack Trace
3 | Notification

39

6.20.8 Configuration
This represents a list of configurable modules and a collection of configuration parameters per module
within the EDFS system.

Below is an example of the configuration for the LogProcessor component having a Logging module.
The component uses its MessageQueueName to listen for LogMessages and configuration change
messages, and the module has a ConnectionString for persisting those messages to the database.

Example configuration for Log Processor Component

ConfigurableObjectID | ConfigurableObjectName | ParamName ParamValue

1 LogProcessor MessageQueueName | “EDFS_Logging”
2 LogModule MessageQueueName | “EDFS_Logging”

6.20.8.1 Configurable Object Type

Configurable Object Type

ID | Name

1 Component

2 | Module

6.20.8.2 Configurable Component Type

Configurable Component Type

ID | Name

Audit Processor

Data Interface

Data Processor

Event Orchestration

Log Processor

Publisher

Website

Archive Processor

Ol 0 I N OO U DB W|N| PR

Alarm Processor

40

6.20.8.3 Configurable Module Type

Configurable Module Type

ID | Name

Alarm

Audit

Database

Event

Logging

Publishing

Utility

0 |IN| OO U] B W|N| R

Workflow

6.20.8.4 Component Modules
Identifies the Modules used by a Component.

Component Modules

ComponentID Identifies the Component, see Configurable Component Type for

possible values

ModulelD Identifies the Modules used by a Component, see Configurable
Module Type for possible values

6.20.8.5 Configuration Parameter
Contains a single configuration parameter for either a Component or Module used by a Component.

Configuration Parameter

ConfigurableObjectType Either Component or Module

ConfigurableObjectID If object type is Component will link to a Configurable Component
Type, otherwise will link to a Configurable Module Type

Name Name of the parameter (e.g. “LoglLevel”)

Value Value of the parameter (e.g. “3”)

6.20.8.6 Configuration Change Message
Sent to a components work queue when changing the configuration of the Component or a Module

used by a Component

Configuration Change Message

ConfigurableObjectType

Either Component or Module

ConfigurableObjectName

Identifies the Component or Module to which this configuration
change applies, used to fine-tune the configuration change process to
limit the impact of a change to only the affected object

TimeStamp

Date and time when the configuration was changed

42

6.21 Database Layer
This layer comprises of databases required by EDFS application and includes tables and procedures to

store and manage data used by the various modules in EDFS. Listed below are the different databases

and tables used. Please note, database diagrams have not been provided, as they would be prohibitively

large.

6.21.1 EDFS Database

This database contains tables and procedures for events, users, and workflow.

6.21.1.1 EDFS Database Tables
Below are the tables within the EDFS database.

Table

Data Object

Event Information

tblEvents

Event

tblEventSchedules

Event Schedules

tblEventEdits

Tracks the user making an edit to an event and
whether they selected the Publish action

tblEventTypes

Event Type

tblEventCategories

Event Categories

tblEventSubCategories EventSubCategories
tblDescriptors

tbHanelmpacthypes Lahe-tmpact Fype
tblaneStatusThypes Lane StatusType
tbltaneTypes LaneType
tbiRampThypes Ramp-Fype
tbiShoulderTypes ShoulderType

tblDataSources

Data Source Type

tblEventRelationshipTypes

Event Relationship Type

tbIDisseminationChannels

Dissemination Channel Type

tblDataSourceDisseminationChannels

Available channels for each data source

tblEventChannelPublishingStatus

Event Channel Publishing Status

tbIPublishStatusType

Publish Status Type

History

tblAlarmHistory

Contains copy of tblAlarms item after each edit

tblEventHistory

Contains copy of tblEvents item after each edit

43

tblEventScheduleHistory

Contains copy of tblEventSchedules items after each
edit

tblServiceActivationHistory

Contains audit trail of windows service activations

Archive

tblAlarmHistory_Archive

tblAlarms_Archive

tblAuditRecords_Archive

tblEventHistory_Archive

Archived copy of tblEventHistory

tblEvents_Archive

Archived copy of tblEvents

tblEventSchedules_Archive

Archived copy of tblEventSchedules

tblEventScheduleHistory Archive

Archived copy of tblEventScheduleHistory

tblLogMessages_Archive

Unhandled Events

tblUnhandledEvents

Contains events received from message queue that
could not be processed because of an error condition

tblUnhandledEventSchedules

Contains event schedule information received from
message queue that could not be processed because
of an error condition

User Information

tblUsers

User

tblUserStatusTypes

User Status Type

tblUserChallengeQA

User Challenge Questions

tblChallengeQuestions

Contains list of challenge questions available to all
users

tblUserSessions

User Session

User and Role Privileges

tblResourceTypes

Resource Type

tblRoles

Role Type

tblPrivilegeTypes

Privilege Type

tblUserPrivileges

Privileges assigned to a Role

tbIRolePrivileges

Privileges assigned to an individual User

Workflow

tblActions

Action Type

44

tbIStates

Event State Type

tblStateStageTypes State Stage Type
tbiTransitions Transition
tblWorkflows Workflow
tbIWorkflowStates Workflow State
Alarms

tblAlarms Alarm
tblAlarmTypes Alarm Type

tblAlarmStatus

Alarm Status Type

tblAlarmDefaults

Alarm Default Value

Auditing

tblAuditRecords Audit Record
tblAuditRecordTypes Audit Record Types
Logging

tblLoglLevels

Log Level Type

tblLogMessages

Log Message

Configuration

tblConfigurableObjectTypes

Configurable Object Type

tblConfigurableComponents

Configurable Component Type

tblConfigurableModules

Configurable Module Type

tblIComponentModules

Component Modules

tblConfigParameters

Configuration Parameter

6.21 EDFS Modules

This section describes each of the EDFS modules in detail. The design and development of EDFS will

follow a modular/component driven approach. These modules are structured following the “separation

of concern” principle which also allows for a module to be fully designed and implement independent to

other modules.

6.21.1 User Module

User Module provides for all things “User” within EDFS. Other modules will use User Module manage

users, roles and their privileges.

Methods performed by user module are:

e Provide methods to create update and delete users, preferences, groups/roles and privileges.

45

e Provide methods to authenticate and authorize a user.
e Provide methods to manage user session within EDFS.

Two core classes, EDFSMembershipProvider and EDFSRoleProvider provide for all the above major
functionalities. EDFSMembershipProvider inherits from AbstractMembershipShipProvider and
EDFSRoleProvider inherits from AbstractRoleProvider. This layer of abstraction allows for easy extension
and change in future, if such a need arises.

46

Below is a class diagram showing methods and properties available in User Module.

C[) [Disposable

! AbstractMembershipProvider

Abstract Class

Fields

= Properties

-

-

-

-

-

-

-

-

-

-

-

-

DataProvider

EnablePasswordReset
EnablePasswordRetrieval
ErrorMessages

LegManager
MaxInvalidPasswordAttempts
MaxPassword AttemptWindow
MinQuesticnAndAnsweredRequired
MinRequiredMenAlphanumericCharacters
MinReguiredPassweordLength
RequiresQuesticnAndAnswer

RequiresUniqueEmail

= Methods

:,;V

L O OO T OO OTAL

e

LR N

AbstractMembershipProvider

ChangePassword
ange

]

ChangelserPrivilages
ChangeUserRole
ChangeUserStatus (+ 1 overload)
CreateUser

DeletelUser
Dreletelsersession

Dispose

GetAliUsers

GetUser {+ 1 overioad)
GetUserSession

Initialize

ResetPassword
SavelUseriession
UpdateConfigParameters
Updateliser
ValidateParameter
ValidatelUssr

hangePasswordQuestionAndAnswer (+ 1 overl.., |

Class

.;-jlv
.;-j,v
o
W

(EDFSMembershipProvider

= AbstractMembershipProvider

Fields
= Properties

Errorfdessages

= Methods

AddErrorMessage
ChangePassword [+ 1 overload)
ChangePasswordQuestionAndAnswer [+ 1 overload)
ChangelserPrivileges
Changelserfole
ChangelUserStatus (+ 2 overloads)
CreatefActiveDirectory

Createllcer

Deletelser

DeletelserSession

Dispose
EDFSMembershipProvider [+ 2 overloads)
GetAllUsers

Getlser [+ 1 overload)
GetUserChbject

GetUserSession
IsUserExistinglnDatabase
LoadUserddditionallnfo
ResetPassword
SavellserPrivileges
SavellzerSession

Updatellser
WalidateCreatelUserParameters
WalidateEmail

WalidateMame

ValidatePassword
ValidateQuesticnAndAnswer
ValidatelpdateUserParameters
WalidateUser

Validatelsername

47

}}I

" AbstractRoleProvider 7 ! (" EDFSRoleProvider
Abstract Class Class
=+ AbstractRoleProvider

+ Fields
=l Methods
= Methods @ AddRolePrivil
. clePrivileges
% AbstractRoleProvider .
4 o W AddUserPrivileges
W AddRolePrivileges =] @ DeleteRoleDrivil
W AddUserPrivileges & =R rfvf =a=
® CreateRol 2" DeletelserPrivileges
reatefole .
% EDF5RoleProvider
% DeleteRole .
® FindUsersinRol W GetRelePrivileges
indUsersInRole .
% GetlserAndRolePrivileges
W GetdllRoles _
o W GetlUserPrivileges
W GetRolePrivileges
b GetUserAndRolePrivile...
b GetUserPrivileges
W GetllzersInRole
W Initialize
W IslzerlnRole
W RemovellsersFromR ...
% RoleExists

The primary consumer of user module is Web Component; different pages within EDFS website will
make use of methods from EDFSMembershipProvider and EDFSRoleProvider.

For example, the login page will call Validate method to authenticate and authorize a user.

User module internally will call Authenticate method from ActiveDirectoryManager which upon
successful validation will return a user identifier such as email back to user module. The User Module
will then make use of Data Module to perform data user lookup and return a User object back to Web
Component.

The various database tables used by Data Module to maintain data related to User Module are listed
under EDFS database tables.

48

The diagram below shows dependencies between User Module and other modules within EDFS.

Web Component

DatabaseProvider /IQ—

—

Data Module

EDFSRoleProvider /9 l

User Module |

ActiveDirectoryManagélr /'Q— Utility Module

e

Diagram 5: User Module Dependencies

LogManager /IQ—

—

Log Module

49

6.21.1.1 Example of user account validation

The validate user method checks if the user exists in the database. If the user exists, check the user’s
status to determine if it is Active or not. Only the Active can login to the system. This method will lock
the user account after a configurable amount of consecutive password attempts are made within a

configurable amount of time window. The last login date and time will be saved into database if the user

login successfully.

: EDFSMembershipProvider

ValidateUser

GetUser(username)

: DataProvider

User

. ActiveDirectoryManager

[User exist in the database]

[User's status is Active]

ValidateCredentials(username, password)
I

<<return>>

[Login success]

SaveUser()

Save last login
datetime and reset

SaveUser()

failed password
attemp count.

-Increase failed password attempt count.
-Lock user after a configurable amount of
consecutive password attempts are made
within a configurable amount of time window.

50

6.21.2 Utility Module

Utility module consists of classes and method that provide for wide variety of functions and are used
across modules and components. For example, the ActiveDirectoryManager class provides methods
that are used by User Module to perform ActiveDirectoy related methods such as validating a user,

creating new user and roles within EDFS. The utility module does not provide a layer of abstraction as is

the case with other modules. Most of the classes within utility module will be of type Static.

Below is the class diagram for ActiveDirectoryManager, which provides for various methods to interact

with active directory.

? IDisposable

Class

€€ 66 6CCOC €O O &

ActiveDirectoryManager

* Fields
= Methods
ActiveDirectoryManager

Createlser
Deletelser
DisableUserAccount
Dispose
EnableUserfccount
GetUser
Is&ccountlocked
IsUserExisting
SetUserPassword
UnlockUserAccount
ValidateCredentials

51

6.21.3 Log Module

Methods primarily performed by the log module are:

e Asynchronously log error messages to a queue (MSMQ) using the LoglLevel of the LogCondition

to determine the level of detail to log, and whether to send an email notification.

e Provide a method to write a queue message to persistent storage, called by the Log Processor

service.

e Provide methods to query persistent storage based on event or date range criteria.
Below is the class diagram showing methods and properties available in the Log Module.

The AbstractLogger provides a common interface for all error logging within the EDFS system, and the
LogManager provides an implementation of the AbstractLogger to read and write messages to a
message queue and persistent storage.

; IDisposable

»| |

| Abstracti ogoer
Abstract Class

| ¥ Fields

| = properties
5 DataProvider

j IsReadOnly
f QueueManager

= mMethods

AbstractLogger

Dispose

Initialize

Log (+ 1 overload)
LogEvent {+ 1 overload)
LogUser {(+ 1 overload)
Persist

Query (+ 3 overloads)
UpdateConfigParameters

<

CCECECeCeCOCO

oo

' LogManager

Class
- AbstractLogger

Fields
= Methods

4"¥ EventMessage
Initialize
Log (+ 1 overload)
LogEvent (+ 1 overload)
LogManager
LogUser (+ 1 overload)
Persist
Query (+ 3 overloads)

UpdateConfigParameters
UserMessage

CCCCCT T

&
<

»]

52

6.21.4 Audit Module
Methods primarily performed by the audit module are:

Asynchronously log audit records to a queue (MSMQ).
Provide a method to write a queue message to persistent storage, called by the Audit Processor.

Provide methods to query persistent storage based on record type criteria.

Below is the class diagram showing methods and properties available in the Audit Module.

The AbstractAuditor provides a common interface for all auditing within the EDFS system and the

AuditManager provides an implementation of the AbstractAuditor to read and write audit records to a

message queue and persistent storage.

IDisposable
" AbstractAuditor 7 [AuditManager ®)
Abstract Class Class
= Abstractfuditor
Fields
] = Methods

EIrF'erErtlas . W AuditManager

rf]) DataProvider & TInitialize

ﬁ) QueueManager L & Logalarm
= Methods i @ LogEvent

5% AbstractAuditor % LogEventRelationship

% Dispose % LogUser

W Initialize ¥ Persist

% LogAlarm W Query

% LogEvent 4" SendMessage

% LogEventRelationship % UpdateConfigParameters

@ LogUser

% Persist

% Query

% UpdateConfigParameters

53

6.21.5 Alarm Module
Functions primarily performed by the alarm module are:

e Provide methods to create and update the state of an alarm using the DataModule to write to
persistent storage, and AuditModule to track changes.

e Provide methods to query persistent storage based on Event ID criteria.
e Provide methods to query alarm default values based on Event Type and Event SubType.

Below is the class diagram showing methods and properties available in the Alarm Module.

(]__) IDizposable

[AlarmMa nager
Class

3

Fields
=l Properties

ﬁ AuditManager

ﬁ_" DataProvider
= Methods
Activate (+ 1 overload)
ActivateReadyToActiveAlamms
AlarmManager
Confirm (+ 1 overload)
Create (+ 1 overload)
Deactivate (+ 1 overload)
Dispose
Find
GetActivealarms
GetalarmDefaults
GetAlarmDefaultvalue (+ 1 overload)
GetReadyToActivellarms

Query {+ 1 overload)
Save

SaveAlarmDefault
scanOrphanEvents
scanUnpublishedEvents
SetGlobal

SetOwner

Snooze (+ 1 overload)
UpdateConfigParameters

{{{{{{{{{b{{{{{{{{{{{{

6.21.5.1 Processing a configuration change notification
The alarm processor component inherits from AbstractEDFSComponent which provides the stream line

for the configuration change notification.

When the listener receives a change message, it would use cross-thread communication to notify the
main thread to pause after processing the currently running threads which are created by the
component, stop the timer, retrieve the updated configuration parameters, update the configurations,
reset the timer and resume processing.

The following modules and classes are involved in configuration updates:
1. Alarm module,
2. Audit module,
3. Data module and
4. Log module

55

6.21.5.2 Example of alarm component process

: Alarm Component

Create

: Alarm Manager : Data Provider

]
Create and start the timer
|

[For each interval]
Timer

[

T
|
|
|
|
|
|
|
[
|
|
1
\
Par ScanOrphanEvents () }

CreateAlarmForOrphanEvents ()

Create alarm for each event

ScanUnpublishedEvents ()

Create alarm for each event

+—ActivateReadyToActiveAlarms ()— GetReadyToActiveAlarms()

Activate each alarm

6.21.6 Configuration Module
Functions primarily performed by the configuration module are:

e Store configuration information in the database and provide methods to retrieve and update
individual configuration parameters for each Component and its Modules.

o Apply configuration changes without restarting software or hardware and affecting users logged
in by notifying affected Components and their Modules of a configuration change via the
Components’ message queue.

56

Below is the class diagram showing methods and properties available in the Configuration Module.

»|

‘ ConfigurationManager
Class

Fields

=l Properties
ﬁ ComponentConfigParameters
= Methods

¥ ConfigurationManager

@ Get {+ 3 overloads)

& GetallConfigParameters
4% LoadFromPersistentStorage
4% PersistConfigParameter

v Reload

W SendUpdateMotification
W Set (+ 3 overloads)
¥ SetMultipleYalues

4" SetSingleYalue

57

6.21.6.1 Example of loading configuration parameters for the LogProcessor component

The component constructor receives a DataModule instance pointing to the configuration database, and

uses this to create an instance of the ConfigurationManager which calls

GetComponentConfigurationByName(‘LogProcessor’) returning the following data:

ConfigurableObjectID | ConfigurableObjectName | ParamName ParamValue
1 LogProcessor MessageQueueName | “EDFS_Logging”
2 LogModule ConnectionString “server=localhost;etc..”

The LogProcessor creates an instance of MSMQManager using its MessageQueueName to listen for Log

Messages and configuration change messages.

The LogModule parameters are passed to the constructor for LogModule which creates a DataModule

instance using the connection string for writing to the logging database. This creation pattern applies to

all service components.

LogProcessor Service LogProcessor figurati I

Create: with config database con

tion string

Create: with Config DataModule
) N

Config DataModule

Create: for LogProcessor with Config DataMedule
1

AR I S

Query

Instance e—

Instance

6.21.6.2 Processing a configuration change notification

e B S e e

58

For Components, the QueuelListener would be a part of the component, running on a secondary thread.
When the listener receives a change message, it would use cross-thread communication to notify the
main thread to pause after processing the current record or batch, retrieve the updated configuration
parameters and resume processing.

For web applications, a Queuelistener service would receive the change message and update the
timestamp on the file used for cache dependency, forcing the application to reload and cache the
updated configuration parameters.

6.21.6.3 Example of processing a configuration change notification for the LogProcessor
component

|
|
Receive: configuration change message

Notification

| e

Config parameters for LogProcassor and LoggingModule
=L

|
Update: LoggingModule ConnectionString parameter
| 1

e HE et I S

59

6.21.7 Publishing Module
Funstions primarily performed by the publishing module are:

e Provide methods to create and register channels and publish (scheduled and unscheduled)
events to them.

e Provide a method to move to “Publish” state from “New” state for scheduled events which need
to publish right at the moment.

The AbstractChannel provides a common interface for all channels within the EDFS system. Push
method provides common behavior logic for all channels. Drive classes must implement abstract
methods such as Connect, Disconnect, Send, etc.

The AbstractPublishingManager provide a common interface for publishing the events and creating
channels. Publish method provides common behavior logic for publishing events and updating the status
to persistent storage. Drive class must implement abstract methods such as GetReadyToPublishEvents,
CreateChannels, MoveNewsStateToPublish, etc.

The PublishingManager provides an implementation of the AbstractPublishingManager to read the
events from persistent storage and use ChannelFactory class to create channels.

The publishing component provides the following functionalities for publishing manager module:

1. Listening to (“EDFS_Publishing”) queue for update configuration changes which is implemented
in AbstractEDFSComponent class.
2. Provide timer to execute the publishing manager’s methods.

Below is the class diagram showing methods, properties and enumerations available in the Publishing
Module.

60

(P [Disposable

| AbstractPublishingManager @1}

Abstract Class

Fields

= Methods

7% AbctractPublishingManager
% Dispose
7% GetDisseminaticnChannelByID
7 GetAReadyToPublishEvents
T LogdChannels
% MoveNewStateToPublish
5% Process
% Publish
% RegisterChannel
% RelcadChannels
% UpdateConfigParameters
7% UpdateCventChannelPublishingstatus

| PublishingManager E3
Class
=+ AbstractPublishingMarager

Fields

= Methods
% Dispose
7% GetReadyToPublishEvents
7% LoadChannels
W MoveMNewStateToPublish
% PublishingManager
% UpdateConfigParameters
7% UpdateEventChannelPublishingStatus

B S, A TTTTTTTET ST E e nananannnnes g

.\.

(ChannelFactory
Class

Fields

= Methods

% ChannelFactony
% CreateChannel
a"* CreateTwitter

B3

6.21.7.1 Processing a configuration change notification
The publishing processor component inherits from AbstractEDFSComponent which provides the stream

line for the configuration change notification.

[Disposable

' AbstractChannel (2 |

Abstract Class

Fields

= Properties

D
= Methods
77 AbstractChannel
g Connect
7¥ Disconnect
% Dispose
% Push
77 Send

" TwitterChannel (&

Class
=+ AbstractChannel

Fields
= Methods

77 Connect

7* Disconnect

% Dispose

2% Initialize

77 Send

& TwitterChannel

When the listener receives a change message, it would use cross-thread communication to notify the
main thread to pause after processing the currently running threads which are created by the

-

component, stop the timer, retrieve the updated configuration parameters, update the configurations,

reset the timer and resume processing.

The following modules and classes are involved in configuration updates:

5. Alarm module,
6. Audit module,

61

7. Data module,

8. Event module

9. Log module,

10. Publishing module,
11. Queue manager,
12. User module and
13. Workflow module

6.21.7.2 Example of publishing component process

: Publishing Component

Create
: Publishing Manager : Event Manager
| | |
Create and start the timer } }
| | |
| |
| |
[For each interval] } }
Timer J } }
1 1
[l [l
Par Publish () | |
L |
[For each channel] }
Par) }
! |
Process () I
! |
|
|
L

H UpdateEventChannelPublishingStatus ()
|

MoveNewStateToPublish ()

[For each event]
Loop J

Process ()

62

6.21.7.3 Example of publishing the events

: PublishingManager : EventManager

: ChannelFactory : Channel

* i
|

LoadChannels() |

= |

Loop

[For each dissemination channels]
|

CreatChannel(channel ID)

<<return>>

Publish

GetReadyToPublishEvents()
e

events U

Loop

|
|
[For each event] i
|
|

Loop

f

SN

[For each channel in an event]
|

|
[If the event has not published yet for this channel]

Connect()

<<return>>

] |
Connection Success]

Send()

Disconnect()

1
UpdatePublishedStatus()
-

|
|
I
I
I
I
I
I
|
I
|
I
|
I
|
I
|
I
I
;
I
I
;
|
|
|
|
Push(event) }
|
|
I
I
I
I
I
I
|
I
|
I
|
I
|
I
|
I
I
I
I
I
I
I
I
|
I
|
|
1
I

UpdatePublishedStatus()

status as it is. This is done in DB.

Update the status only if the timestamp on event is
same or older than before publishing, else leave the

63

6.22 Reporting

This section describes each of the EDFS reports in detail.

6.22.1 Event Report
This report includes the Audit report as a sub report.

tblAuditRecords

Fields Columns to pull data from Query
Event ID ID column from tblEvents GetEventReport(fromDate,
toDate, myEventTypelD,
myEventSubTypelD,
myRoadName)
Event Description Description column from Same
tblEvents
Road Name Name column from tblFacilities same
where ID = tblEvents.
RouteFacilitylD
6.22.2 Event Audit Report
Fields Columns to pull data from Query
Date/Time Change TimeStamp column from GetEventAuditReport(myEventID)

Username FirstName + LastName columns Same
from tblUsers where ID =
tblAuditRecords.UserlD

Field(s) Changed FiledName column from Same
tblAuditRecords

Changed From FromValue column from Same
tblAuditRecords

Changed To ToValue column from same
tblAuditRecords

6.22.3 Event Activities Reports (per time period)
Fields Columns to pull data from Query

64

Average Event duration

Duration column from
tbleventhistory where status =

GetEventActivitiesReports
(fromDate, toDate,

closed eventTypelD)
Number of Events collected Distinct of tbleventhistory where | same
status = new
Number of Events Modified Distinct of tbleventhistory where | same
status <> new
Number of Events Discarded Distinct of tbleventhistory where | Same
status = discarded
Number of Events Disseminated | Distinct of tbleventhistory where | Same
status = published
Number of Event Closed Distinct of tbleventhistory where | same

status = closed.

6.22.4 User Performance Measures Reports (per time period)

Fields

Columns to pull data from

Query

Number of Published
Events

Total count of ID from
tbleventhistory where status =
published per User

GetUserPerformanceMeasuresReports
(fromDate, toDate, eventTypelD,
eventSubTypelD, userlD)

Average Event Handling Distinct of tbleventedits (TBD) | TBD
Time per User
Total Number of Events Total count of ID from Same
Modified tbleventhistory where status

<> new per User
Username FirstName + LastName same

columns from tblUsers where
ID = tblEventHistory.UserID

65

6.22.5 Current Performance and Activities Reports (at current date/time)

Fields Columns to pull data from | Query

Number of logged in Total count of GetNumberOfCurrentLoggedinUsersReport
users tblUserSessions ()

Number of Published Total distinct count of GetNumberOfCurrentPublishedEventsReport
Events tbleventhistory where (myEventTypelD, myEventSubTypelD)

status = published and
event@current between
StartDate and EndDate

6.23 Data Archiving

The data archiving will consists of archiving below list of tables:

e tblEvents, tblEventHistory, tblEventSchedules, tblEventScheduleHistory, tblAlarms,
tblAlarmHistory, tblAuditRecords and tblLogMessages.

The data in the above tables are archived into the following tables:

e tblEvents_Archive, tblEventHistory_Archive, tblIEventSchedules_Archive,
tblEventScheduleHistory Archive, tblAlarms_Archive, tblAlarmHistory_Archive,
tblAuditRecords_Archive and tblLogMessages_Archive.

The schemas of the archive tables are similar to the original tables except that their primary key

" “auto increment” feature is disabled and they have one additional column named
“DateArchived”. All necessary SQL statements and logic for data archiving are inside “ArchiveEvents”
stored procedure. The events which are older than 15 days (which is a configurable) and are closed will
be archived. After data has been successfully archived, the original data will be purged from respective
tables.

columns

This entire functionality is wrapped within ArchieveProcessor component. The archive processor
component inherits from AbstractEDFSComponet.

When the component receives a change message, it will use cross-thread communication to notify the
main thread to pause after processing all the currently executing threads that were created by the
component, stop the timer, retrieve the updated configuration parameters, update the configurations,
reset the timer and resume processing.

The following modules and classes are involved in configuration updates:
1. Alarm module,

Audit module,

Data module,

Event module

Log module,

vk wn

66

6. Queue manager and
7. User module

6.23.1 Example of archive component process

: Archive Component

Create

: Event Manager

]
Create and start the timer
|

: Data Provider

ArchiveEvents ()

T

\

|

|

|

|

|

[For each interval] }
Timer J }
\

|

|

|

|

‘

ArchiveData ()

Archive events which are closed
and older than xx days

7 Technology Selection

7.1.1 Software and hardware requirements

The software and hardware requirement for new EDFS consists of:

e Relational Database — To fulfill all data storage needs per section 2.5 of Functional requirement

document.

e Web Server — A server environment to host the EDFS website.

e Processing Server — A server environment that will run all the data interfaces, data processors,

logging, and audit and event orchestration engine.

e Messaging Queue - To allow inter process message transfers between various components

within EDFS.

e Web Framework — A software framework that will provide platform to build EDFS web

application and services.

e Server Side Development Platform — A software programming language and runtime

environment that will facilitate development of server side code.

67

JavaScript framework - A JavaScript code library that provides inbuilt methods and utilities for
faster and cleaner user interface code development.

Mapping framework — A combination of server and development framework to create and
consume maps within EDFS.

7.1.2 Key criteria
The key criteria for selecting any particular technology are:

Prior experience — Was this particular technology successfully used in previous projects?

Learning Curve — If there is no prior experience with this technology, how extensive is the
learning curve?

Integration - How well does this particular tool integrate with rest of the system, EDFS and other
511 applications?

Hosting flexibility — How tightly coupled is this particular tool to hosting provider, in this case,
AWS?

Scalability Limitations— How well does this technology scale?

Availability Limitations — Are there any limitations that would hinder developing a highly
available solution?

Below tables lists how these technical requirements are met and justification for selection.

Requirement

Selection Prior Learning | Integration | Hosting

Scalability | Availability | Notes
experience | Curve Flexibility | Limitation | Limitation

68

Relational
Database

MysQL
(Deployed
as AWS
RDS)

Yes

NA

Low

High

None

None

Keeping in line with MTC's
future cloud based AWS
hosting environment, MYSQL
RDS has been selected. The
RDS solution offers built-in
replication for high availability
without the additional burden.
This also offers a very low risk
in terms of moving away from
AWS, incase MTC decides so.
The current requirement
doesn’t entail deeper
integration of database with
other components besides
being used as pure storage.
Therefore the low level of
integration is not perceived as
a big risk to the project.

Web Server

l1S7.5
running
on
windows
2008 in
AWS.

Yes

NA

High

High

None

None

The web development
framework will be ASP.NET
4.0, 1S 7.5 and higher is
recommended server
environment by Microsoft.
Other existing MTC websites
are using use 11S 7.5.

Processing
Server

Windows
2008
Server

Yes

NA

High

High

None

None

Since the server side
development framework will
be C#, Windows server is the
most appropriate choice.

Messaging
Queue

MSMQ

Yes

NA

High

High

None

None

MSMQ provides a light-weight
asynchronous message
processing framework and
integrates well with Microsoft
.NET.

Web
Framework

ASP.NET
4.0

Yes

NA

High

High

None

None

We have used this in new
traffic website and all new
projects are being developed
using ASP.NET 4.0.

Server Side
Development
Platform

C#4.0

Yes

NA

High

High

None

None

We have used this in new
traffic website and all new

69

projects are being developed
using C# 4.0.

JavaScript jQuery Yes NA High High None None We have used this in new
framework traffic website and many other
projects.
Mapping ArcGIS 10 | Yes NA High High None Non We have used this in new
framework and traffic website. And the
ArcGIS project is based on the
JavaScript assumption to reuse mapping

capabilities form traffic
website.

70

8 Windows Services
Multiple instances of a windows service such as the LogProcessor may be running at the same time, but
only one will be active. All instances of a service will have a unique name and start in passive mode.

Each instance of the service will have a config file with similar entries:

Each passive instance will ping the service heartbeat at a unique (configurable) interval so that only one
will try to become active eg:

e instancel will check each minute at the 15 second mark
e instance2 will check each minute at the 30 second mark

When a passive instance detects that the service heartbeat is outdated it will:
e stop heartbeat ping
e update service activation history and heartbeat with its instance name and timestamp
e load component configuration settings from the ConfigDB
e start queue listener (and timer if it’s a timed service)
e start timer to update the heartbeat

The outdate interval = 2 * number of instances * heartbeat interval

An active instance must be restarted to return to passive mode.

71

8.1 Service Installation
Each instance of the service must have its own folder with a copy of the exe, dll and config files eg:

e C:\Services\EDFSCore.LogProcessor\instances\one
e C:\Services\EDFSCore.LogProcessor\instances\two

The SC utility can be used to create, stop and delete the service instances:

8.1.1 Create the service instances

8.1.2 Delete the service instances

8.2 Service Monitoring

8.2.1 tblServiceActivationHistory
When an instance of a service becomes active, it updates the service activation history.

ServiceName | InstanceName | PreviousinstanceName | TimeSinceHeartbeat | Timestamp
SAIC EDFS SAIC EDFS SAIC EDFS 00:08:59
LogProcessor | LogProcessor 1 | LogProcessor 2

8.2.2 tblServiceHeartbeats
At every heartbeat interval, the active service updates the heartbeat.

ServiceName

InstanceName

Timestamp

SAIC EDFS LogProcessor

SAIC EDFS LogProcessor 1

73

8.3 Service Testing
The Test.EDFSCore.Interactive project contains a ServiceActivationTest form that can be used to
start/stop and monitor instances of the LogProcessor service. When running in DEBUG mode, the

services will write entries to the System Event log.

A session may look like this:

